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Abstract 
Regional food supply, organic farming, and chang-
ing food consumption are three major strategies to 
reduce the environmental impacts of the agricul-
tural sector. In the German Federal State of Baden-
Württemberg (population: 11 million), multiple 
policy and economic incentives drive the uptake of 
these three strategies, but quantitative assessments 
of their overall impact abatement potential are 
lacking. Here, the question of how much food can 
be produced regionally while keeping environmen-
tal impacts within political targets is tackled by 

comparing a scenario of maximum productivity to 
an optimal solution obtained with a multi-objective 
optimization (MO) approach. The investigation 
covers almost the entirety of productive land in the 
state, two production practices (organic or conven-
tional), four environmental impact categories, and 
three demand scenarios (base, vegetarian, and 
vegan). We present an area-based indicator to 
quantify the self-sufficiency of regional food sup-
ply, as well as the database required for its calcula-
tion. Environmental impacts are determined using 
life cycle assessment. Governmental goals for 
reducing environmental impacts from agriculture 
are used by the MO to determine and later rate the 
different Pareto-efficient solutions, resulting in an 
optimal solution for regional food supply under 
environmental constraints. In the scenario of maxi-
mal output, self-sufficiency of food supply ranged 
between 61% and 66% (depending on the diet), 
and most political targets could not be met. On the 
other hand, the optimal solution showed a higher 
share of organic production (ca. 40%–80% com-
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pared to 0%) and lower self-sufficiency values 
(between 40% and 50%) but performs substantially 
better in meeting political targets for environmental 
impact reduction. At the county level, self-
sufficiency varies between 2% for densely popu-
lated urban districts and 80% for rural counties. 
These results help policy-makers benchmark and 
refine their goalsetting regarding regional self-
sufficiency and environmental impact reduction, 
thus ensuring effective policymaking for 
sustainable community development.  

Keywords  
Environmental Impact, Evolutionary Algorithm, 
Foodshed, Life Cycle Assessment, Multi-Objective 
Optimization, Organic Farming, Regional 
Agriculture, Self-Sufficiency, Scenario Analysis, 
Germany 

Introduction and Literature Review 

Problem Setting 
Agriculture and animal husbandry contribute sig-
nificantly to the two most pressing environmental 
problems globally: climate change and nitrogen 
pollution (Smith et al., 2014; UNEP, 2013). At the 
same time, they form the largest employment sec-
tor in developing economies and still employ 27 
million people in the Organization for Economic 
Co-operation and Development (OECD) countries 
(OECD, 2019). Agriculture and animal husbandry 
are directly linked to and affected by the Sustain-
able Development Goals and related targets 
(United Nations General Assembly, 2015), 
including the goals ‘Zero Hunger,’ ‘Responsible 
Consumption and Production,’ and ‘Life on Land.’ 
Transforming food production systems is, there-
fore, a major leverage point for sustainable 
development, both from the environmental and 
the health and social perspectives (Foley et al., 
2011; Schmidt-Traub, Obersteiner, & Mosnier, 
2019; Tilman & Clark, 2014).  

Regional and Organic Agriculture 
In developed economies, regional and organic agri-
culture are two widely discussed and promoted 
supply-side solutions for sustainable food provi-
sion. Further, consumers are often willing to pay 

higher prices for these products compared to con-
ventional and non-regional products (Brunori et al., 
2016; Theurl, 2016). 
 Organic agriculture, defined as an integrated 
farming system that strives for sustainability, the 
enhancement of soil fertility, and biological diver-
sity, is an ongoing sustainability transformation in 
the sector that can cause less environmental dam-
age and greenhouse gas (GHG) emissions per hec-
tare than conventional agriculture (Badgley et al., 
2007; Erb et al., 2009; Muller et al., 2017; Reganold 
& Wachter, 2016). Meta-studies on the topic out-
line that organic farming leads to significantly 
higher soil organic matter content and soil nitro-
gen, an increase in biodiversity, and a decrease in 
energy turnover (Mondelaers, Aertsens, & van 
Huylenbroek, 2009; Tuomisto, Hodge, Riordan, & 
Macdonald, 2012). Yet these benefits generally 
come with lower yields (Seufert, Ramankutty, & 
Foley, 2012), which leads to higher land use com-
pared to conventional food production. Due to the 
often lower yields in organic production, organic 
agriculture’s per product impacts can be higher 
than those from conventional agriculture (Seufert 
& Ramankutty, 2017), and its potential to create 
and ensure food security worldwide is limited 
(Connor, 2008; Seufert et al., 2012).  
 The spatial extent of food supply chains is 
another debated issue in sustainable food produc-
tion (Born & Purcell, 2006; Brunori et al., 2016; 
Edwards-Jones, 2010; Edwards-Jones et al., 2008). 
Recently, there has been an increasing demand for 
regionally produced food in Germany (Feldmann 
& Hamm, 2015) because many consumers expect 
social and environmental benefits from its con-
sumption (Zepeda & Deal, 2009). However, the 
actual environmental impacts of regional agricul-
ture are highly debated. For example, Schlich and 
Fleissner (2005) showed that, regarding energy 
turnover, traveling distance is of minor concern 
compared to production practices, at least for some 
products. They argue that due to efficiency of 
scale, large businesses produce more efficiently 
than smaller ones. Contrarily, Andersson and 
Ohlsson (1999) came to the conclusion that 
besides a lower energy turnover, smaller bread pro-
duction systems have less impact on eutrophica-
tion, acidification, and ozone-depleting substance 



Journal of Agriculture, Food Systems, and Community Development 
ISSN: 2152-0801 online 
https://www.foodsystemsjournal.org 

Volume 10, Issue 1 / Fall 2020 45 

formation compared to a larger, industrial one. 
Similarly ambiguous are the results of several stud-
ies that compared the footprint of apples con-
sumed in Europe, originating from Europe and 
New Zealand respectively (Jones, 2002; Milà i 
Canals, Cowell, Sim, & Basson, 2007; Saunders, 
Barber, & Taylor, 2006; Stadig, 2001). Edwards-
Jones et al. (2008) highlighted the importance of 
system boundary definitions and advocated for the 
inclusion of social and economic factors when 
evaluating whether local food is the better option 
or not. Currently, the share of organic products 
consumed in Germany is rising (Statista, 2013), and 
regional products are politically supported (e.g., in 
the German federal state of Baden-Wuerttemberg; 
MLR, 2017). 

Trade-offs in Agriculture and Multi-objective 
Considerations 
Maximizing the output of an agricultural produc-
tion system is optimal in terms of demand fulfill-
ment but not in terms of environmental pressures. 
Trade-offs between different sustainable develop-
ment goals also exist for regional food production. 
A widely used technique to analyze such trade-offs 
in agriculture is multi-objective optimization (MO) 
(Holzkämper, Klein, Seppelt, & Fuhrer, 2015). For 
example, Lautenbach, Volk, Strauch, Whittaker, 
and Seppelt (2013) used MO to assess the trade-off 
between biofuel and food production in terms of 
their respective yields, water discharge, and nitrate 
leaching. They concluded that the methodology 
can be a helpful tool in the management of ecosys-
tem services. A study conducted by Galán-Martín, 
Vaskan, Antón, Esteller, and Guillén-Gosálbez 
(2017) used results of life cycle assessments to opti-
mally allocate agricultural land to either rain-fed or 
irrigated wheat production in Spain.  
 Trade-offs also apply to regional production of 
organic food: It may be possible to decrease envi-
ronmental impacts by scaling up organic agricul-
ture, but this is likely to decrease the amount of 
food that can be produced within a region due to 
lower yields (Zasada et al., 2019). While trade-off 
relationships between environmental impacts and 
productivity of organic farming are addressed fre-
quently in the literature (Azadi, Schoonbeek, 
Mahmoudi, Derudder, De Maeyer, & Witlox, 2011; 

Seufert et al., 2012; Tuomisto et al., 2012), their 
connection to regional self-sufficiency of agricul-
tural products (lower productivity means lower 
self-sufficiency rates) has not been studied in detail. 

Research Gap, Goal, and Scope 
In particular, the question of how regional food 
supply potential changes if different environmental 
impacts are included in the optimization process is 
understudied. A prerequisite for such an analysis 
would be an indicator for a region’s potential self-
sufficiency (e.g., what is possible with given socio-
geographic conditions?). Although many indicators 
exist that represent the status-quo regarding a 
region’s self-sufficiency (Blay-Palmer, Santini, 
Dubbeling, Renting, Taguchi, & Giordano, 2018; 
Pradhan, Lüdeke, Reusser, & Kropp, 2014; 
Strolling of the heifers, 2019), none of them is suit-
able to calculate potential self-sufficiency rates un-
der different scenarios. This is because they use 
actual production, or monetary data instead of esti-
mating production based on the agricultural land 
and its use. A research tool that determines how 
self-sufficiency changes under different demand 
scenarios and environmental impact reduction tar-
gets could not be found in the literature either.  
 The German Federal State of Baden-
Wurttemberg (BW) has strong lobby group and 
political support for organic regional agriculture, 
e.g., in the form of so-called “bio-pioneer regions,” 
which are promoted using the slogan, “Bio + 
Regional = Optimal” (Ministerium für Ländlichen 
Raum & Verbraucherschutz Baden-Württemberg, 
2019). But to what degree self-sufficiency of 
regional food supply is even possible in BW is not 
known. Also unanswered is the question of 
whether BW’s agricultural production system could 
meet political emission targets under maximal out-
put. We want to fill the aforementioned research 
gap for BW by addressing the following research 
questions: 

1. How large is the maximal possible self-suf-
ficiency of food supply for BW? 

2. How compatible is a scenario of maximum 
self-sufficiency with political environment 
protection goals? 

3. What would be an optimal solution that 
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ensures relatively high self-sufficiency with 
relatively low environmental impacts?  

4. How do the answers to questions 1 - 3 
change under different demand patterns 
and production practices?  

Condensed into one goal that answers all of these 
questions, it means that we want to: 

Analyze the trade-off relationship between 
self-sufficiency and environmental impacts 
by comparing a state of maximum self-
sufficiency with the optimum of these 
opposing objectives for different demand 
and production patterns 

 To tackle this goal, we compiled a comprehen-
sive database of agricultural plots and pastures 
within the state, sorted by possible crop sequences, 
as well as life cycle inventories of crop production. 
We defined a set of food demand scenarios, de-
rived a suitable definition of the ‘regional self-suffi-
ciency rate’ for food demand across all categories, 
and applied a multi-objective optimization. In the 
supplementary material, we also provided results to 
the question, “How big is the self-sufficiency re-
garding regional food supply of different sub-
regions of Baden-Württemberg across all demand 
categories?” 
 The study focuses on the state of BW because 
there is strong political support for regional agricul-
ture and community development on the govern-
mental, county, and city levels (Ministerium für 
Ländlichen Raum & Verbraucherschutz Baden-
Württemberg, 2019). In order to inform the politi-
cal and community development process at the 
state level, the geographical scope is limited to the 
state boundaries. Optimizing a food system with 
regional scope will of course lead to a very differ-
ent outcome compared to a scope including 
national or global markets. It is not our research 
goal to provide optimal outcomes with supra-
regional scope, as that would require significantly 
more data and explicit modeling of global markets 
for agricultural commodities. Instead, our intention 
is to quantify the environmentally optimal outcome 
for a set of scenarios conceived under the premise 
that a high share of regional supply is a paramount 

objective. In such a situation and given that 
imports to BW are very small compared to the 
overall market volume for different commodities, 
we can assume that sufficient import quantities will 
be available irrespective of the optimization out-
come for BW. Hence, the production and impacts 
of imported commodities do not need to enter the 
BW-focused optimization. 

Applied Research Methods  
We applied a multi-objective optimization to 
obtain a first estimation of the possible regional 
self-reliance of food production (Peters, Wilkins, 
Rosas, Pepe, Picardy, & Fick, 2016). 

Multi-objective Optimization with Evolutionary 
Algorithms 
Multi-objective optimization algorithms are applied 
to problems with several opposing objectives. They 
try to minimize (or maximize) all objectives at the 
same time. With the number of objectives, the 
dimension of the decision space increases (Deb, 
2014). Thus, for optimizations with more than one 
objective, the result is not one specific point but 
rather a set of points that are all equally (Pareto-) 
optimal (Konak, Coit, & Smith, 2006). A point 
within the solution space is called Pareto-optimal if 
it is not possible to better one objective without 
worsening another (Ehrgott, 2012). The set of 
Pareto-optimal points, which is determined by 
multi-objective optimization, is called Pareto front 
or Pareto set. It can be examined with a variety of 
visualization methods to gain insight into trade-off 
relationships and possible best solutions (Tusar & 
Filipic, 2015). Yet, finding one best solution is non-
trivial because, at some point, the different objec-
tives need to be compared and weighed against one 
another. The procedure developed by Blasco, 
Herrero, Sanchis, and Martínez (2008), which is 
also used in this study, solves this issue by defining 
desirability classes for each objective and applying a 
scoring system that follows the ‘one vs. others cri-
teria’ (cf. supplementary material) introduced by 
Messac (1996). Where possible, desirability classes 
for the different environmental objectives were 
defined according to actual emissions and existing 
governmental goals. 
 In the field of multi-objective optimization, the 
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family of evolutionary algorithms (EA) is widely 
used to determine the Pareto set (Deb, 2014). EAs 
are stochastic search algorithms that try to opti-
mize a target function by mimicking evolutionary 
processes like mutation, crossover, and selection 
(Baeck & Schwefel, 1993). The target function is 
chosen in accordance with the research goal. Here, 
we determine an optimal outcome by maximizing 
self-sufficiency and minimizing environmental 
impacts by altering how the available land is culti-
vated in terms of which field crop is produced on 
which land class, and which production practice is 
used. The objective function is a vector Q, whose 

elements denote the mass of the different agricul-
tural products supplied by the land within the 
region’s boundaries. To incorporate production 
practice, each product is represented by two ele-
ments—one for organic and one for conventional 
production. According to the research goal, the ob-
jectives that should be optimized by altering Q are: 

a. A quantitative measure of self-sufficiency  
b. Environmental impacts induced by regional 

agriculture. 

 As a measure of self-sufficiency, we introduce 
an area-based indicator called ‘level of 
self-sufficiency’ (LSS). For its calculation 
we developed an agricultural production 
model and compiled the required data-
base of land plots and production life 
cycle inventories (LCI). Environmental 
impacts are calculated by scaling up the 
life cycle inventories (LCI) of the indi-
vidual products and production practices 
following the life cycle assessment 
(LCA) methodology (Figure 1). Research 
question 4 is investigated by repeating 
the procedure with alternative food 
demand scenarios, and the question on 
county-level results is answered by 
reducing the geographical scope from 
the state to the county level. 

Level of Self-Sufficiency  
Self-sufficiency is a key indicator in 
characterizing regional agriculture. It 
describes to what extent the final food 
demand within a foodshed can be met 
with products that are produced within 
it. Here, instead of referring to Hedden 
(1929), who first introduced the term 
foodshed, we rely on a more recent 
definition from Peters, Bills, Lembo, 
Wilkins, and Fick (2009), who describe it 
as “the land that could provide some  
portion of a population center’s food 
needs within the bounds of a relatively 
circumscribed geographic area” (p. 73). 
Since self-sufficiency is an area-related 
problem, its indicator needs to be area-

Figure 1. Workflow of the Multi-objective Optimization

Q is the vector of the produced amount of food for every product.  
“Per-cap. demand” is the per-capita demand; LCA: life cycle assessment; 
LSS: level of regional self-sufficiency of food supply; MO: multi-objective 
optimization; EA: evolutionary algorithms. 
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based as well. In contrast, weight- or calorie-based 
LSS values are misleading because they are not 
good proxies for food quality or environmental 
impacts, especially in cases where products vary 
significantly in their agricultural land occupation 
values (ALO) (examples are provided in the sup-
plementary material). Thus, we propose the follow-
ing area-based level of self-sufficiency indicator:  

The LSS of any given foodshed is the area 
used for producing regionally consumed 
food, divided by a hypothetical area neces-
sary to produce the amount of food that 
meets the inhabitants’ total demand. The 
latter is calculated by assuming production 
practices and area yields are the same as for 
the regionally produced food (‘mirrored 
agriculture’ assumption). In other words, 
the available agricultural land and its use are 
extrapolated so that they meet the total 
demand. 

 To calculate LSS, information is needed about 
the amount of food consumed by the inhabitants, 
the amount of food produced in the foodshed, and 
how much agricultural land is occupied. In this 
study, demand data are compiled from official 
statistics, and the amount of produced food and 
the occupied area are estimated with an agricultural 
production model, which uses detailed information 
of the available agricultural land in BW.  

Demand 
Food consumption data representing typical Ger-
man consumption is provided by the Ministry for 
Nutrition and Agriculture (Ministerium für 
Ernährung & Landwirtschaft). It was converted to 
per capita values and aggregated into a representa-
tive market basket (Clancy et al., 2017) with 17 prod-
ucts in 14 main food product categories (Table 1).  
 During the aggregation process, food items 
that cannot be grown in BW (rice, cacao, fish, cit-
rus fruits) or are of minor relevance in terms of cal-

Table 1. Per Capita Annual Demand for Agricultural Products and Product Categories*  

Agricultural product Category Base [kg/yr] Vegetarian [kg/yr] Vegan [kg/yr]

carrots carrots 64.9 68.8 68.8

lettuce lettuce 35 37.1 37.1

sunflower 
vegetable oil 80.5 147.1 184.8 

rapeseed 

potatoes potatoes 178.2 238.7 238.7

rye rye 13 13.8 13.8

 soybeans  soybeans 1.3 45.3 73.4

sugarbeet sugarbeet 258.3 118.3 118.3

tomatoes tomatoes 38.7 41 41

wheat wheat 104.9 111.4 111.4

beef beef 9.4 0 0

eggs eggs 14.4 12.8 0

milk pasture fed 
milk  401.9  414 0 

milk arable fed 

pork pork 39.1 0 0

broiler 
poultry 15.7 0 0 

turkey 

*The list excludes fruits, wine, cacao, tea, coffee, and the like. The multitude of available food products was converted and aggregated to 
categories of agricultural products (e.g., bread to wheat, second column). For some categories, different agricultural production inventories 
exist (first column). 
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orie intake and food security in Germany; honey, 
nuts, game, rabbit, sheep, and horse were excluded. 
Fruit trees and vineyard cultivation were not 
included either because areas dedicated to their 
production are difficult to transform, and we 
reduced the dedicated agricultural land accordingly. 
For the different food categories, we designated 
certain products as representative for the entire cat-
egory (e.g., soy as proxy for legumes). The aggre-
gated market basket represents the base demand 
scenario for the study. It covers the demand 
reported by the Ministry for Nutrition and Agricul-
ture to an extent of 80% for vegetable products, 
90% for meat products and 100% for milk prod-
ucts (weight percentages). The base demand was 
altered according to Meier and Christen (2013) to 
estimate vegetarian and vegan demand scenarios 
respectively, which serve as reference cases for the 
optimization. The total demand is calculated by 
multiplying the per capita demand by the popula-
tion of BW (Statistische Ämter des Bundes & der 
Länder, 2018). For details see the supplementary 
information. 

Agricultural Land  
In order to obtain detailed and realistic information 
of the production potential within BW, high reso-
lution geo-referenced terrain, climate, and soil data 
were combined with the requirements of the differ-
ent agricultural food crops. We used this informa-
tion to identify the unique combination of crops 
that can potentially be grown on all arable land 
plots. The result is a novel georeferenced vector 
database with 319516 individual agricultural plots 
at a resolution of ca. 60x60m for the German state 
of Baden-Württemberg, each tagged with data on 
soil quality (soil depth, stone content, and ground-
water table, which determine plot-specific crop 

restrictions and crop sequence), and inclination 
(plots with an inclination of >25% were excluded). 
This information is the central database of this 
work, and its compilation is described in detail in 
the supplementary material. For the land allocation 
procedure, the plots were aggregated into 137 dif-
ferent classes of arable land, by grouping plots with 
similar or identical crop sequence potentials. The 
total area of the different classes within BW ranges 
from 0.04 to ca. 330000 ha, with the five biggest 
land classes making up 78% of the total arable land 
(808615 ha) (Bundesamt für Kartographie und 
Geodäsie [BKG], n.d.; Kaule et al., 2011; VELA, 
2014) . Each of these land classes has specific yields 
and possible crop sequences for the 16 crops that 
serve as food or fodder crop (Table 2). Next to ara-
ble land, pasture is included as well, and the 
amount of pasture was retrieved from georefer-
enced land use data for BW (Bundesamt für 
Kartographie und Geodäsie, 2018). The details of 
compilation of the land class database are 
described in the supplementary material. 

Agricultural Production Model and LSS Calculation 
An agricultural production model was developed to 
calculate the levels of self-sufficiency for a given 
vector Q that lists the quantities for each product 
produced within the foodshed. In the model, all 
entries of Q are converted into the area needed to 
produce the respective food or fodder crops (e.g., 1 
kg milk is expressed in terms of the area needed to 
produce the fodder required for its production). 
The area needed for a single crop is calculated by 
multiplying its quantity with its ALO-value. Crop 
rotation constraints are taken into account with 
crop rotation factors, which indicate the propor-
tion of the area within a land class that is maximally 
available for a single crop. For example, if one crop 

Table 2: Which Crops (Food and Fodder) Can Be Grown in the Five Biggest Land Classes 

Class Area (ha) Carrots Salad Potato 
Rape- 
seed Rye Pea

Sugar-
beet

Sun-
flower

Toma-
toes Wheat Barley

Maize 
(corn) 

Maize 
(silage) Soy Triticale

1 334,557              X 

2 177,726               

3 59,562        X      X 

4 37,799 X             X 

5 20,980 X    X X   X X   X   X 
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can only be farmed every third year, the model 
would allocate a maximum of 33% of that land 
class to that crop. The crop rotation factors were 
taken from KTBL (2009) and Rippel (2014). For a 
given crop, ALO-values and crop rotation factors 
may be different for organic and conventional 
production. The model consecutively allocates the 
area needs of the different crops to the land classes 
where they can be grown, and diminishes the 
remaining available area within those land classes 
accordingly.  
 In the allocation process, both land classes and 
crops are used in a certain order, which is based on 
how flexibly they can be used to farm different 
crops: By using up “picky” land classes and 
restricted crops first, it is assured that the area is 
used efficiently. After all crops are allocated to cor-
responding land classes, the area needed for each 
product category c (nc [ha]) is calculated. With Q 
(population size times per-capita demand) the 
model also calculates product category specific 
demand fulfillment rates (rc [%]). These values indi-
cate to what extent the demand of a given category 
is met, and they are used to estimate the area that 
would be needed if the total demand would be met. 
In the calculation of demand fulfillment rates, cou-
pled products are treated in a system expansion 
approach: The production of one kiloton of a main 
product (eggs, milk), automatically produces a cer-
tain amount of poultry and beef respectively (as co-
products). With given nc and rc the area-based LSS-
values can be calculated: 𝐿𝑆𝑆(𝑄) =  ∑ ௡೎(ொ)భర೎సభ∑ ௡೎(ொ)భర೎సభ ା ∑ (௡೎(ொ)∗ భబబషೝ೎(ೂ)ೝ೎(ೂ) )భర೎సభ  (1) 

 The numerator represents the area that is 
needed for producing Q. The denominator repre-
sents the area that is needed if the local demand 
would be met. It is the sum of what is needed to 
produce Q and what is needed to produce the 
‘missing part’ of the demand. For example, assume 
a category's demand fulfillment rate is 75% and it 
needs 30 ha arable land. Then (100-75)/75 multi-
plied with 30 ha yields 10 ha as the area needed to 
cultivate the missing 25%.  
 This hypothetical area of 10 ha automatically 

possesses the same composition of products and 
production practices as the actually produced food 
because it was calculated from its demand fulfill-
ment rate (mirrored agriculture). Note, here, that 
the hypothetical area is only used as an extrapola-
tion of the available agricultural land (and its use) 
in order to quantify LSS and does not relate to any 
actual production. 
 In case the available agricultural land is 
exceeded, or overproduction occurs for any cate-
gory (rc > 100), LSS is set to zero as penalty for the 
optimization (overproduction of one category will 
leave less area for the others). For poultry and beef, 
the demand fulfillment rates are adjusted to include 
cases where they are co-products of egg and milk 
production. 

Environmental Impact Calculation with LCA 
Total potential environmental impacts induced by 
agriculture were calculated by scaling up product 
specific LCIs calculated for one kiloton of raw 
product at the farmgate as reference flow. The 
assessment contained all upstream products includ-
ing, e.g., energy and fertilizer use. The LCAs were 
performed in openL CA v. 1.6 with the 
AGRIBALYSE v. 1.3 database. This was chosen 
after extensive review of the existing LCI databases 
because it allows for detailed comparison of con-
ventionally and organically grown products (cf. 
supplement). The farming processes selected from 
AGRIBALYSE v1.3, which reflect French agricul-
tural practice in a climate similar to that of BW, 
were adapted to reflect regional production in BW 
by changing the electricity mix. With these modi-
fied process inventories, midpoint indicators 
according to the ReCiPe 2008 life cycle impact 
assessment method (Goedkoop et al., 2009) were 
calculated for four salient agricultural impact cate-
gories (Stoate, Boatman, Borralho, Carvalho, Snoo, 
& Eden, 2001): climate change (CC), marine eutro-
phication (ME), terrestrial acidification (TAC), and 
terrestrial ecotoxicity (TET). It is important to note 
that in the ReCiPe 2008 method, marine 
eutrophication refers to nitrogen eutrophication to 
the water body in contrast to freshwater eutrophi-
cation, which refers to phosphorus eutrophication. 
 For some products, the database only contains 
conventional production. In the case of beef and 
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turkey production, LCIs of the organic counterpart 
were estimated by taking the conventional pro-
cesses and changing the fodder input to an organic 
diet with the same energy content. In the case of 
organic milk production, only a single management 
system is available in the LCI database and is used 
in our model. It represents a feeding system relying 
on grazed grass as well as concentrate feed such as 
silage corn. For vegetable products where LCIs are 
not available (two conventional and six organic 
products), data from either the conventional coun-
terpart or a similar crop was used as proxy. Be-
cause the impacts are later related to governmental 
goals concerning German emissions, only those 
emissions taking place within the country of pro-
duction are included in the impact assessment step 
of the LCA. In the objective function of the MO, 
the amount of every product (i.e., each element of 
Q) is multiplied with the corresponding character-
ized life cycle inventory result of that product. By 
summing up the emissions of all products per im-
pact category, the total emissions of Q are obtained 
(in other words the line vector Q is multiplied with 
the column vector of the respective LCI).  

Conducting the MO 
The MO was conducted with the widely used 
NSGAII algorithm (Deb, K., Pratap, A., Agarwal, 
S., & Meyarivan, T. 2002), which is designed to 
minimize all objectives. Because LSS needs to be 
maximized, for the optimization it was transformed 
into negative LSS by multiplying it with minus one. 
The other objectives (environmental impacts) are 
calculated as described above, resulting in the fol-
lowing target function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠൫𝑄ሬ⃗ ൯ = 𝐹⃗ =  
⎝⎜
⎜⎜⎛

𝑄ሬ⃗ ∗ 𝐿𝐶𝐼஼஼ሬሬሬሬሬሬሬሬሬሬሬ⃗𝑄ሬ⃗ ∗ 𝐿𝐶𝐼ெ஺ሬሬሬሬሬሬሬሬሬሬሬሬ⃗𝑄ሬ⃗ ∗ 𝐿𝐶𝐼்஺஼ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗𝑄ሬ⃗ ∗ 𝐿𝐶𝐼்ா்ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗−𝐿𝑆𝑆(𝑄ሬ⃗ ) ⎠⎟
⎟⎟⎞  (2) 

It is a function of 𝑄ሬ⃗  and the outcome is another 
vector (𝐹⃗) with five elements that are all subject to 
minimization (Note that 𝑄ሬ⃗  is a column vector and 
the respective 𝐿𝐶𝐼ሬሬሬሬሬሬ⃗  vectors are row vectors).  

 In order to properly approximate the Pareto 
front, the algorithm needs boundaries and reasona-
ble start values for Q (first-generation). These were 
obtained by a mechanistic approach that gradually 
increases the amount of each product simultane-
ously until the demand is met or the area is 
exceeded. A random element was chosen from the 
solution set generated by that approach to ensure 
that the first generation has a big enough variety. 
The parameter population size (not to be confused 
with the population of BW) defines the number of 
individuals within one generation of the algorithm 
and by that, the number of points in the resulting 
Pareto set. To ensure that the Pareto set is large 
enough to broadly reflect the Pareto front, it was 
set to 1500, reflecting typical choices in the litera-
ture. The MO was run with a probability for muta-
tion of 0.2 and a probability for crossover of 0.7 
over 5000 generations. Mutation randomly alters a 
number of elements within Q whereas crossover 
creates “offspring” by combining two Qs (“par-
ents”) according to a specified operator. In this 
study an operator that, element-wise, calculates the 
mean of the two “parents” was used.  

Desirability Classes 
The methodology from Blasco et al. (2008) for 
retrieving an MO solution needs pre-defined desir-
ability classes for every objective. In this study the 
classes include the following: highly undesirable 
(HU), undesirable (U), tolerable (T), desirable (D), 
and highly desirable (HD). For climate change, eu-
trophication, and terrestrial acidification, desirabil-
ity thresholds were defined according to actual 
emissions (undesirable) and governmental goals 
(highly desirable) developed by the institutions 
BMU (n.d.), MUKE BW (n.d.), and Umwelt 
Bundesamt (UBA) (2018) (for details, cf. Supple-
ment). Because state level emission data and goal 
definitions for climate change and terrestrial 
acidification were not available for BW, corre-
sponding data for Germany were scaled down 
using the share of BW in German agricultural out-
put. For terrestrial ecotoxicity, no emission data 
was available, so its range within the Pareto set was 
divided into five equally sized intervals. We defined 
the thresholds for LSS according to what is maxi-
mally possible in BW if environmental constraints 
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are not accounted for. Table 3 shows the desirabil-
ity thresholds for the different objectives. A score 
was assigned to every desirability class (Table 3, 
bottom) according to the scheme described by 
Blasco et al. (2008), which fulfills the ‘one vs oth-
ers’ criteria (i.e., bettering one objective in a given 
class is preferred over bettering all other objectives 
in the next best class) (Messac, 1996). By summing 
up the scores of every class, the total score of a 
point within the Pareto set is derived. The lower it 
is, the better the point performs regarding the 
desirability of the different objectives. The best 
point is then determined by choosing the point 
with the lowest score out of all possible points. 

Results  
The regional self-sufficiency of food supply was 
maximized while minimizing environmental im-
pacts in order to analyze the trade-off relationship 
between the opposing objectives. Figures 2–4 show 
so-called level plots (Blasco et al., 2008) of the 
multi-objective optimization for base-, vegetarian-, 
and vegan-demand scenarios. Level plots show the 
whole Pareto set for one specific objective. The x-
axis represents the different objective values in 
physical units whereas the y-axis represents a norm 
that describes the distance to an ideal point. For 
this hypothetical point, the value of every objective 
is the minimal, and the point with the lowest norm 
value is closest to the ideal point. Here, the infinity 
norm was applied because it is best suited for 
visualizing trade-offs between conflicting objec-
tives. Because the same norm is shown for each of 

the different objectives, one can compare the per-
formance of a certain point regarding different 
objectives. Desirability classes and their thresholds 
are shown as colored background and dashed grey 
lines to show how desirable different points are for 
each objective. Additionally, a scoring system 
which is described in detail in the supplement, was 
applied to the points in the Pareto set. In the plot 
the score is shown as the points’ coloring. The 
lower the score, the better a point performs con-
cerning the defined desirability classes. The best 
solution (i.e., the point with the lowest norm value 
among those, with lowest score) is shown as a red 
triangle. The red rectangle represents the point of 
maximum LSS.  
 In the level plots, the trade-off between LSS 
and environmental impacts is visible: Outcomes 
with increasing impact values are less desirable 
(darker background) while increasing LSS values 
leads higher desirability (brighter background). 
 For every objective, moving towards either 
very small or very high values will eventually 
increase the distance to the ideal point (expressed 
as infinity norm) because performance regarding 
one of the opposing objectives is worsened too 
severely. The case of maximum LSS is one of those 
extremes. Here, LSS values range between 61 and 
66% (research question no. 1), depending on the 
demand scenario (Table 4). For all diets, soy is a 
limiting factor in LSS maximization because its 
overall production potential in BW is low. In the 
base demand scenario, soy is primarily needed as 
animal fodder, in the vegan diet as vegetable food 

Table 3. Desirability Thresholds and Scores for the Desirability Classes*

Objective** Unit HD D T U HU

CC kt CO2-eq < 4737.1 < 5021.9 < 5306.6 < 5591.4 ≥ 5591.4

ME kt N-eq < 10.4 < 17.3 < 24.26 < 31.2 ≥ 31.2

TA kt-SO2-eq < 84.8 < 90.6 < 96.3 < 102 ≥ 102

TET kt 1,4 DCB-eq < 90 < 175.7 < 261.4 < 347.1 ≥ 340.1

LSS % > 60 > 50 > 40 > 30 ≤ 30

 Score 0 1 6 31 156

* For the five objectives described above, the desirability classes are highly desirable (HD), desirable (D), tolerable (T), undesirable (UD), 
and highly undesirable (HU).  
** The acronyms are climate change (CC), marine eutrophication (ME), terrestrial acidification (TAC), terrestrial ecotoxicity (TET), and level 
of self-sufficiency (LSS). 
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and in the vegetarian for both. Compared to the 
vegan demand scenario, the base and vegetarian 
demand scenarios have higher maximum LSS val-
ues, because, for the latter, pasture is available for 
food production (regulations and also partly politi-
cal climate considerations prohibit the conversion 
of pastures to arable land). 
 The level plots show that the state of maxi-
mum LSS comes with strong environmental im-
pacts: In the base and vegetarian demand scenario, 
the state of maximum LSS is in the highly undesir-
able section for climate change, marine eutrophica-
tion, and terrestrial ecotoxicity. In these impact 
categories political goals cannot be achieved in a 
state of maximum productivity (research question 
2). For the vegan demand scenario only terrestrial 
ecotoxicity is in the undesired section for 
maximum LSS.  
 In contrast to maximized productivity, the MO 
optimum’s values lay in moderate desirability clas-

ses for all objectives (research question 3): For the 
base and vegetarian demand scenario, the opti-
mum’s worst section is ‘tolerable,’ for the vegan 
demand scenario its worst is the ‘desirable’ section. 
Among the different diets’ optimums, the vegan 
demand scenario has the highest LSS value (50%). 
 When the state of maximum LSS and the 
MO’s optimum are compared (research goal), an 
overproportional decline in environmental impacts 
is visible (Figure 5). For example, in the base 
demand scenario, going from a point of maximum 
LSS to the optimum decreases self-sufficiency by 
40% (27 percentage points), but also decreases 
climate change impacts and terrestrial acidification 
by half and terrestrial ecotoxicity by 80%. Marine 
eutrophication decreases by about 40% as well. For 
the vegan demand scenario similar declines can be 
observed, but in the vegetarian demand scenario it 
is less distinct. For all demand scenarios, the pro-
duction technology mix of the optimum comprises 

Figure 2. Pareto Set with 1,500 Elements of a Multi-objective Optimization for Four 
Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO 
was conducted for a base food demand scenario. 
The set contains 1,500 points that represent the Pareto front. The Pareto-efficient solutions are plotted 
using the infinity norm as y-axis coordinate, and they are evaluated according to the desirability classes 
defined in table 3 and a score based on these classes. The red triangle represents the optimum obtained 
by this approach; the red square represents the state of maximum LSS. 
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  Figure 3. Pareto Set with 1,500 Elements of a Multi-objective Optimization (MO) for Four 
Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO 
was conducted for a vegetarian demand scenario. 

Figure 4. Pareto Set with 1,500 Elements of a Multi-objective Optimization (MO) for Four 
Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO 
was conducted for a vegan demand scenario. 
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at least 40% organic agriculture (Table 4), which 
contributes to the nonlinear decline of environ-
mental impacts (especially terrestrial ecotoxicity).
 Interestingly, none of the Pareto-optimal 

points produced results where all the agricultural 
land is used. This indicates that in order to reach 
the proposed goals in environmental protection 
(which enter the routine via the desirability classes), 

Table 4. Comparison of the Agricultural Land Allocation for a State Where Level of Self-sufficiency (LSS) is 
Maximized (Left) vs. the Best Solution of the Multi-Objective Optimization (MO, right)  

Indicator 

 Maximize LSS Optimum of MO 

Unit Base Vegetarian Vegan Base Vegetarian Vegan

Score* 1 469 469 162 12 18 3

CC kt 5,929 5,981 1,926 2,966 2,923 1,095

ME kt 32 33 22 19 19 15

TAC kt 85 85 24 45 42 15

TET kt 426 444 413 79 197 168

LSS % 65 66 61 40 40 50

Arable land used % 93 95 80 74 77 76

Pasture used % 99 1 0 65 43 0

Share org. % 0 0 0 77 44 54

* The score is the one obtained by the multi-objective optimization. CC stands for climate change, ME for marine eutrophication, TAC for 
terrestrial acidification, and TET for terrestrial ecotoxicity. 

Figure 5. Radarcharts of Performances Regarding Level of Sself-sufficiency (LSS) and Environmental 
Impacts in a State of Maximum LSS and the Multi-Objective’s (MO’s) Optimum 
Each chart is designated for a demand scenario and scaled according to the respective state of maximum LSS. Each 
objective’s range is divided into five equal sections. Based on these sections, the overproportional decline of environmental 
impacts by going from a state of maximum LSS to the optimum is evident: for example, in the vegan demand scenario, the 
optimum’s LSS value lies in the outmost section whereas all the impact values lie further within. 
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a shift toward more environmentally friendly pro-
duction practices is not enough. There is also a 
need to produce less than what would be possible 
in the region by converting some land to fallow, 
which could lead to additional environmental bene-
fits. The county specific LSS values, the resulting 
food quantities per product for all cases, and the 
demand fulfillment rates for each product category 
are listed in the supplementary material. 

Discussion 
The results show that a state of maximum self-
sufficiency can reach LSS-values ranging from 61% 
to 66% but fail to satisfy three out of four environ-
ment protection goals for base and vegetarian 
demand scenarios, and one out of four for the 
vegan demand scenario (research questions 1 and 
2). The optimum retrieved by the MO is a compro-
mise between opposing objectives and fulfills envi-
ronmental requirements to at least a ‘tolerable’ 
degree, but only reaches LSS-values ranging from 
40% to 50% (research question 3). With a vegetar-
ian diet, it is possible to reach the highest level of 
self-sufficiency, because pasture, which cannot be 
converted to other land use types due to legal and 
partly climatic reasons, is utilized for dairy prod-
ucts. If environmental impacts are included in the 
optimization process, the vegan diet outperforms 
the other two not only in most impacts, but also in 
LSS (research question 4).  
 The decline in LSS-values under environmental 
constraints compared to a state of maximum LSS 
comes with an even greater decline in environmen-
tal impacts (research goal). For base and vegetarian 
demand, this overproportionality can partly be 
explained by a lower share of meat and/or milk 
products in the MO’s optimum. Here, only 18%–
21% (compared to 28%–29% in the LSS maximi-
zation) of the products are animal-based, whose 
production tends to put more pressure on the 
environment. Another central factor in impact 
reduction is the shift towards organic production 
(from 0% to around 40%–80%) as the vegan 
demand scenario exemplifies.  

Policy Implications 
Optimization results such as the ones presented 
here show the extent to which conflicting objec-

tives can still be achieved under best possible cir-
cumstances. This maximum potential impact of a 
sustainable development strategy provides a guard-
rail against which the different policy targets and 
the eventual real-world impacts can be bench-
marked. It also shows the potential of a given strat-
egy in relation to what other strategies can achieve. 
It can be communicated to policy makers to show 
the potential of regional agriculture under different 
environmental and sustainability objectives. The 
policy targets themselves often do not directly 
build on optimization outcomes and are the result 
of a consensus-building process that takes into 
account the perspectives and power of different 
stakeholders. The main application of the MO 
results is thus not to be used directly as policy tar-
gets, but to make sure that policy targets are feasi-
ble in principle. This situation is similar to how 
energy system models are used to depict optimal 
future outcomes of the energy transition 
(Pfenninger, Hawkes, & Keirstead, 2014). The pro-
cess of informing policy target setting is best ap-
plied at the state and county level due to the coarse 
level of resolution of the land-use conditions and, 
in particular, the average process inventories for 
farming the different crops. Local, farm-level con-
ditions may deviate substantially from the average 
and require other, locally optimal decisions. The 
results are by no means to be interpreted such that 
all organizational units, including farms, should 
adhere to the solutions found. Instead they can be 
used to set regional targets based upon the differ-
ent incentives that regions devise for reaching 
them. 

Community Development for Sustainable Agriculture 
The study presents an analysis of both the current 
and extreme diet alternatives, such as a completely 
vegan diet. The extreme cases were studied to map 
the solution space and show what changes in envi-
ronmental impacts and self-sufficiency are possible 
in principle to then inform policy and public 
debates. From the analysis itself, we can conclude 
neither that such extreme developments are desira-
ble nor that they are feasible. Instead, and this is 
where the true value of the study lies in our view, 
we show that sustainable development in the food 
system requires both: major shifts in farming prac-
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tices and major shifts in consumption patterns. The 
sustainability transformation on both production- 
and consumption-side has to be co-designed using 
a variety of planning and community development 
tools including transdisciplinary research. Urban-
resident-driven initiatives such as the ‘save the 
bees’ campaign (proBiene—Freies Institut für 
ökologische Bienenhaltung, 2019) focus on one 
part only (here: the supply side) and under-appreci-
ate the importance of community development 
required for adopting more sustainable farming 
practices. They tend to also ignore the system-wide 
consequences of their vision, such as a shifting of 
impacts to other regions as a result of increasing 
regional organic farming output without changes 
on the demand side (Muller et al., 2017; Smith, 
Kirk, Jones, & Williams, 2019). 

Limitations of the Study 
Due to their stochastic nature, EAs can only 
approximate the Pareto set. We found that the 
NSGAII algorithm requires a very large computa-
tional effort to maintain a pressure towards the 
Pareto front when there are more than three objec-
tives to optimize (Coello Coello, Aguirre, & Zitzler, 
2005). For the five objectives considered here, we 
therefore chose a very large population size (1,500) 
and many generations (5,000). A leaner solution 
would be to incorporate an adjustment in the algo-
rithm according to Köppen and Yoshida (2007), 
but that was not possible within the scope of this 
study. 
 The food basket used in this study only con-
tains a certain selection of food products to reflect 
German consumption. Therefore, the results only 
apply to a part of the total demand. Due to the fact 
that vegetable products are underrepresented com-
pared to meat and milk products, the vegan 
demand scenario is biased in the sense that LSS is 
overestimated. On the other side, the choice of soy 
as the sole legume is a bias that might underesti-
mate LSS for the vegan and vegetarian demand 
scenario because the land in BW that is suitable to 
grow soy is limited.  
 The approach presented here needs detailed 
geo-referenced land-use and census data. It was 
possible to conduct such a study for Germany, 
where such data is relatively easily accessible, but 

this may not be possible in regions with poorer 
data availability. 
 In general, LCA results come with high epis-
temic uncertainty due to the proxy choice made 
(use of aggregated AGRIBALYSE datasets) and 
the assumptions and uncertainties contained 
therein. In addition, there is an aleatory uncertainty 
of the LCI data of the different agricultural pro-
cesses due to changing local and seasonal condi-
tions. Especially the poor representation of distinc-
tive impacts for different management systems in 
organic milk production is a major shortcoming 
and may overestimate the environmental impacts 
for base and vegetarian demand. Still, using those 
LCI datasets was the only feasible way to obtain 
reasonable impact estimates for regional agriculture 
in BW, and more region- and site-specific agricul-
tural process inventories are needed to provide 
more accurate scenarios in the future, including 
potential yield changes as a consequence of climate 
change (Griffin et al., 2018). Considerations of the 
economic and political feasibility of the self-suffi-
ciency rates and underlying scenarios, as well as the 
question of how and where the missing food 
should be produced and imported from without 
intense environmental damages, are of paramount 
importance but were beyond the scope of this 
study. 

Further Research 
Next to overcoming the limitations stated above, 
more site-specific process inventories are needed 
to increase the relevance of the MO-based 
approach at the local scale (farm cooperative or 
farm-level). Moreover, not only production but 
also scenarios and business models for storage, 
logistics and transport, and marketing need to be 
included in the system boundary to fully describe 
regional potential and sustainable relations between 
food production and consumption. More high-
resolution information is needed regarding the 
usage of plant protection agents, as the currently 
available information is very scarce. The region-
based scenarios should be contrasted with those 
including a depiction of global market for agricul-
tural commodities to study the displacement and 
indirect land-use effects of substantial changes 
towards organic agriculture in BW, as demon-
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strated for other regions by Muller et al. (2017) 
and Smith et al. (2019). 

Conclusions  
The study showed that regional agriculture in 
Baden-Württemberg cannot be fully self-sufficient 
regardless of the diet (level of self-sufficiency 
(LSS) ranges between 61% and 66%), because of 
the high population density (310 inhabitants/km2). 
Moreover, an agricultural production system 
targeted at maximum output, cannot meet all 
political environmental protection goals. Using 
multi-objective optimization, it was possible to 
identify optimal trade-offs between regional self-
sufficiency and environmental impacts. The 
optimum is not only a compromise between the 
conflicting objectives (all objectives are at least 
‘tolerable’ for base and vegetarian and at least 
‘desirable’ for vegan demand scenario), but also 
eco-efficient in a sense that when compared to a 
state of maximum LSS, environmental impacts are 
reduced overproportionally compared to the LSS 
reduction. This overproportional decline in 
impacts is partly due to a shift towards organic 

production. The efficient state has a share of 
organic production of around 40%–80% 
(depending on the diet) and balances self-suffi-
ciency and environmental impacts (according to 
governmental goals), with LSS-values around  
40%–50%. A shift towards a vegan diet (also if 
incomplete) has strong co-benefits regarding 
environmental impacts and self-sufficiency. Thus, 
another conclusion is that food production 
problems need to be tackled not only from the 
production but also from the consumption side. 
 The results presented may help policy-makers 
as well as community-driven initiatives to bench-
mark their transformation target suggestions, as 
they present a quantitative basis to substantiate an 
ongoing debate.   

Acknowledgments 
The authors want to express their gratitude to 
Prof. Dr. Rainer Grießhammer, Michael Asse, 
Frank Gräter, Jens Lansche, Dr. Hansjörg 
Nußbaum, Hansjörg Schrade, Franz Schweizer, 
and Dr. Aurélie Wilfart-Monziols for sharing their 
expert knowledge.  

Supplementary Material 
A supplementary file is provided that contains additional method descriptions and results. The land class 
dataset is available on Zenodo (https://doi.org/10.5281/zenodo.3706470), and for the model code, a 
GitHub repository was created (https://github.com/christianbuschbeck/RegionalFood-MO). 

References 
Andersson, K., & Ohlsson, T. (1999). Life cycle assessment of bread produced on different scales. The International Journal 

of Life Cycle Assessment, 4(1), 25–40. https://doi.org/10.1007/BF02979392  
Azadi, H., Schoonbeek, S., Mahmoudi, H., Derudder, B., De Maeyer, P., & Witlox, F. (2011). Organic agriculture and 

sustainable food production system: Main potentials. Agriculture, Ecosystems & Environment, 144(1), 92-94. 
https://doi.org/10.1016/j.agee.2011.08.001 

Bäck, T., & Schwefel, H.-P. (1993). An overview of evolutionary algorithms for parameter optimization. Evolutionary 
Computation, 1(1), 1–23. https://doi.org/10.1162/evco.1993.1.1.1  

Badgley, C., Moghtader, J., Quintero, E., Zakem, E., Chappell, M. J., Avilés-Vázquez, K., Samulon, A., & Perfecto, I. 
(2007). Organic agriculture and the global food supply. Renewable Agriculture and Food Systems, 22(2), 86–108. 
https://doi.org/10.1017/S1742170507001640  

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto 
front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908–3924. 
https://doi.org/10.1016/j.ins.2008.06.010  

Blay-Palmer, A., Santini, G., Dubbeling, M., Renting, H., Taguchi, M., & Giordano, T. (2018). Validating the city region 
food system approach: Enacting inclusive, transformational city region food systems. Sustainability, 10(5), 1680. 
https://doi.org/10.3390/su10051680  



Journal of Agriculture, Food Systems, and Community Development 
ISSN: 2152-0801 online 
https://www.foodsystemsjournal.org 

Volume 10, Issue 1 / Fall 2020 59 

BMU. (n.d.). Climate Action Plan 2050—Germany’s long-term emission development strategy. Retrieved from Federal 
Ministry for the Environment, Nature Conservation and Nuclear Safety website: 
https://www.bmu.de/en/topics/climate-energy/climate/national-climate-policy/greenhouse-gas-neutral-germany-
2050/  

Born, B., & Purcell, M. (2006). Avoiding the local trap: Scale and food systems in planning research. Journal of Planning 
Education and Research, 26(2), 195–207. https://doi.org/10.1177/0739456X06291389  

Brunori, G., Galli, F., Barjolle, D., van Broekhuizen, R., Colombo, L., Giampietro, M., . . . Touzard, J.-M. (2016). Are 
local food chains more sustainable than global food chains? Considerations for assessment. Sustainability, 8(5), 449. 
https://doi.org/10.3390/su8050449  

Bundesamt für Kartographie und Geodäsie [BKG]. (n.d.). Produkte und Services. Dienstleistungszentrum BKG. 
Retrieved June 30, 2020, from 
http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile
=1&gdz_unt_zeile=13&gdz_user_id=0 

BKG. (2018). CORINE land cover 10 ha. Retrieved from  
https://gdz.bkg.bund.de/index.php/default/digitale-geodaten.html?___store=default  

Clancy, K., Bonanno, A., Canning, P., Cleary, R., Conrad, Z., Fleisher, D., … Tichenor, N. (2017). Using a market basket 
to explore regional food systems. Journal of Agriculture, Food Systems, and Community Development, 7(4), 163-178. 
https://doi.org/10.5304/jafscd.2017.074.018  

Coello Coello, C., A., Aguirre, A., H., & Zitzler, E. (2005). Evolutionary multi-criterion optimization. Proceedings of the 
Third International Conference on Evolutionary Multi-Criterion Optimization, Guanajuato, Mexico (LNCS-3410). 
https://doi.org/10.1007/b106458 

Connor, D. J. (2008). Organic agriculture cannot feed the world. Field Crops Research, 106(2), 187–190. 
https://doi.org/10.1016/j.fcr.2007.11.010  

Deb, K. (2014). Multi-objective optimization. In E. K. Burke & G. Kendall (Eds.), Search methodologies: Introductory tutorials 
in optimization and decision support techniques (pp. 403–449). Boston, MA: Springer US.  
https://doi.org/10.1007/978-1-4614-6940-7_15  

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. 
IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017  

Edwards-Jones, G. (2010). Does eating local food reduce the environmental impact of food production and enhance 
consumer health? Proceedings of the Nutrition Society, 69(4), 582–591. https://doi.org/10.1017/S0029665110002004  

Edwards-Jones, G., Milà i Canals, L., Hounsome, N., Truninger, M., Koerber, G., Hounsome, B., . . . Jones, D. L. 
(2008). Testing the assertion that ‘local food is best’: The challenges of an evidence-based approach. Trends in Food 
Science & Technology, 19(5), 265–274. https://doi.org/10.1016/j.tifs.2008.01.008  

Ehrgott, M. (2012). Vilfredo Pareto and multi-objective optimization. Documenta Mathematica. (Extra Volume ISMP), 447–
453. Retrieved from https://www.elibm.org/issue?q=se:2204+in:316843 

Erb, K.-H., Haberl, H., Krausmann, F., Lauk, C., Plutzar, C., Steinberger, J., . . . Pollak, G. (2009). Eating the planet: 
Feeding and fuelling the world sustainably, fairly and humanely–a scoping study (Working Paper No. 116). Postdam and 
Vienna: Institute of Social Ecology.  

Feldmann, C., & Hamm, U. (2015). Consumers’ perceptions and preferences for local food: A review. Food Quality and 
Preference, 40(A), 152–164. https://doi.org/10.1016/j.foodqual.2014.09.014  

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., . . . Zaks, D. P. M. (2011). 
Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452  

Galán-Martín, Á., Vaskan, P., Antón, A., Esteller, L. J., & Guillén-Gosálbez, G. (2017). Multi-objective optimization of 
rainfed and irrigated agricultural areas considering production and environmental criteria: A case study of wheat 
production in Spain. Journal of Cleaner Production, 140(2), 816–830. https://doi.org/10.1016/j.jclepro.2016.06.099  

Goedkoop, M. J., Heijungs, R., Huijbregts, M. A., De Schryver, A., Struijs, J., van Zelm, R. (2009). ReCiPe 2008: A life 
cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint 
level (First Ed.), Report I: Characterisation. Ruimte en Milieu: Ministerie van Volkshuisvesting, Ruimtelijke 
Ordening en Milieubeheer. 

http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=13&gdz_user_id=0


Journal of Agriculture, Food Systems, and Community Development 
ISSN: 2152-0801 online 

https://www.foodsystemsjournal.org 

60 Volume 10, Issue 1 / Fall 2020 

Griffin, T., Peters, C., Fleisher, D., Conard, M., Conrad, Z., Tichenor, N., McCarthy, A., Piltch, E., Resop, J., & Saberi, 
H. (2018). Baselines, trajectories, and scenarios: Exploring agricultural production in the northeast U.S. Journal of 
Agriculture, Food Systems, and Community Development, 8(2), 23-37. https://doi.org/10.5304/jafscd.2018.082.015  

Hedden, W. P. (1929). How great cities are fed. Boston, MA: D.C. Health and Company. 
Holzkämper, A., Klein, T., Seppelt, R., & Fuhrer, J. (2015). Assessing the propagation of uncertainties in multi-objective 

optimization for agro-ecosystem adaptation to climate change. Environmental Modelling & Software, 66, 27–35. 
https://doi.org/10.1016/j.envsoft.2014.12.012  

Jones, A. (2002). An environmental assessment of food supply chains: A case study on dessert apples. Environmental 
Management, 30(4), 560–576. https://doi.org/10.1007/s00267-002-2383-6  

Kaule, G., Stahr, K., Zeddies, J., Angenendt, E., Bakara, H., Billen, N., . . . Schwarz-von-Raumer, H. G. (2011). 
Nachwachsende Energieträger und Biodiversität: Naturschutzbezogene und ökonomische Entwicklung und 
Bewertung von Anbauszenarien (NawEnNat). LUBW. 

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. 
Reliability Engineering & System Safety, 91(9), 992–1007. https://doi.org/10.1016/j.ress.2005.11.018  

Köppen, M., & Yoshida, K. (2007). Substitute distance assignments in NSGA-II for handling many-objective 
optimization problems. In S. Obayashi, K. Deb, C., Poloni, T. Hiroyasu, & T. Murata (Eds.), Evolutionary multi-
criterion optimization (vol. 4403). Berlin: Springer.  

KTBL. (2009). Faustzahlen für die Landwirtschaft. Yara.  
Lautenbach, S., Volk, M., Strauch, M., Whittaker, G., & Seppelt, R. (2013). Optimization-based trade-off analysis of 

biodiesel crop production for managing an agricultural catchment. Environmental Modelling & Software, 48, 98–112. 
https://doi.org/10.1016/j.envsoft.2013.06.006  

Meier, T., & Christen, O. (2013). Environmental impacts of dietary recommendations and dietary styles: Germany as an 
example. Environmental Science & Technology, 47(2), 877–888. https://doi.org/10.1021/es302152v  

Messac, A. (1996). Physical programming—Effective optimization for computational design. AIAA Journal, 34(1), 149–
158. https://doi.org/10.2514/3.13035  

Milà i Canals, L., Cowell, S. J., Sim, S., & Basson, L. (2007). Comparing domestic versus imported apples: A focus on 
energy use. Environmental Science and Pollution Research—International, 14(5), 338–344. 
https://doi.org/10.1065/espr2007.04.412  

Ministerium für Ernährung & Landwirtschaft. (2016). Statistisches Jahrbuch über Ernährung, Landwirtschaft und 
Forsten der Bundesrepublik Deutschland. Landwirtschaftsverlag Münster. Retrieved from https://www.bmel-
statistik.de/fileadmin/SITE_MASTER/content/Jahrbuch/Agrarstatistisches-Jahrbuch-2016.pdf  

Ministerium für Ländlichen Raum [MLR] & Verbraucherschutz Baden-Württemberg. (2019). Bio-Musterregionen in 
Baden-Württemberg. Retrieved from https://mlr.baden-wuerttemberg.de/de/unsere-
themen/landwirtschaft/oekologischer-landbau/bio-musterregionen/  

MLR. (2017). Natürlich aus der region. Retrieved June 30, 2020, from  
https://mlr.baden-wuerttemberg.de/de/unsere-themen/landwirtschaft/  

Mondelaers, K., Aertsens, J., & van Huylenbroek, G. (2009). A meta‐analysis of the differences in environmental impacts 
between organic and conventional farming. British Food Journal, 111(10), 1098–1119. 
https://doi.org/10.1108/00070700910992925  

MUKE BW. (n.d.). Ministerium für Umwelt Klima und Energiewirtschaft Baden-Württemberg. Retrieved from 
https://um.baden-wuerttemberg.de/de/umwelt-natur/schutz-natuerlicher-lebensgrundlagen/stickstoff/  

Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K.-H., . . . Niggli, U. (2017). Strategies 
for feeding the world more sustainably with organic agriculture. Nature Communications, 8(1), 1290. 
https://doi.org/10.1038/s41467-017-01410-w  

Organization for Economic Co-operation and Development [OECD]. (2019). Employment by activity (indicator). 
Retrieved June 30, 2020, from https://data.oecd.org/emp/employment-by-activity.htm  

Peters, C. J., Bills, N. L., Lembo, A. J., Wilkins, J. L., & Fick, G. W. (2009). Mapping potential foodsheds in New York 
State: A spatial model for evaluating the capacity to localize food production. Renewable Agriculture and Food Systems, 
24(1), 72–84. https://doi.org/10.1017/S1742170508002457  



Journal of Agriculture, Food Systems, and Community Development 
ISSN: 2152-0801 online 
https://www.foodsystemsjournal.org 

Volume 10, Issue 1 / Fall 2020 61 

Peters, C., Wilkins, J., Rosas, S., Pepe, B., Picardy, J., & Fick, G. (2016). Engaging stakeholders to refine models of state-
level food self-reliance. Journal of Agriculture, Food Systems, and Community Development, 6(4), 55-69. 
https://doi.org/10.5304/jafscd.2016.064.003  

Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. 
Renewable and Sustainable Energy Reviews, 33, 74–86. https://doi.org/10.1016/j.rser.2014.02.003  

Pradhan, P., Lüdeke, M. K. B., Reusser, D. E., & Kropp, J. P. (2014). Food self-sufficiency across scales: How local can 
we go? Environmental Science & Technology, 48(16), 9463–9470. https://doi.org/10.1021/es5005939  

proBiene—Freies Institut für ökologische Bienenhaltung (2019). Bienen-Volksbegehren: Keine mobilisierung mehr. 
Retrieved from https://volksbegehren-artenschutz.de/presse  

Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2, 15221. 
https://doi.org/10.1038/nplants.2015.221  

Rippel, R. (2014). Landwirtschaftlicher Pflanzenbau: Grundlagen des Acker- und Pflanzenbaus, der guten fachlichen 
Praxis, der Verfahrenstechnik sowie der Agrarmeteorologie und des Klimawandels - Produktions- und 
Verfahrenstechnik der Kulturpflanzen - Dauergrünland - Sonderkulturen - nachwachsende Rohstoffe - ökologischer 
Landbau - Naturschutz und Landschaftspflege - Feldversuchswesen - Waldbewirtschaftung. BLV-Buchverl. 
Landwirtschaftsverl.  

Saunders, C. M., Barber, A., & Taylor G. J. (2006). Food miles-comparative energy/emissions performance of New Zealand's 
agriculture industry (AERU Research Report No. 258). Retrieved from Lincoln University website: 
https://hdl.handle.net/10182/125  

Schlich, E., & Fleissner, U. (2005). The ecology of scale: Assessment of regional energy turnover and comparison with 
global food. The International Journal of Life Cycle Assessment, 10(3), 219–223. 
https://doi.org/10.1065/lca2004.09.180.9  

Schmidt-Traub, G., Obersteiner, M., & Mosnier, A. (2019). Fix the broken food system in three steps. Nature, 569, 181-
183. https://doi.org/10.1038/d41586-019-01420-2  

Seufert, V., & Ramankutty, N. (2017). Many shades of gray—The context-dependent performance of organic agriculture. 
Science Advances, 3(3). https://doi.org/10.1126/sciadv.1602638  

Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 
485(7397), 229–232. https://doi.org/10.1038/nature11069  

Smith, L. G., Kirk, G. J. D., Jones, P. J., & Williams, A. G. (2019). The greenhouse gas impacts of converting food 
production in England and Wales to organic methods. Nature Communications, 10(1), 4641. 
https://doi.org/10.1038/s41467-019-12622-7  

Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., … Tubiello, F. (2014). Agriculture, 
forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change, IPCC Working Group III 
Contribution to AR5. Cambridge, UK: Cambridge University Press. 

Stadig, M. (2001). Life cycle assessment of apple production - case studies for Sweden, New Zealand and France (SIK-Rapport No. 
6832001).  

Statista. (2013). Marktanteil von biolebensmitteln in Deutschland nach produktgruppen in den Jahren 2009 und 2013. 
Retrieved from https://de.statista.com/statistik/daten/studie/360583/umfrage/marktanteil-von-biolebensmitteln-
in-deutschland-nach-produktgruppen/  

Statistische Ämter des Bundes & der Länder. (2018). Zensus 2011. Retrieved from 
https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html  

Stoate, C., Boatman, N. D., Borralho, R. J., Rio Carvalho, C., de Snoo, G. R., & Eden, P. (2001). Ecological impacts of 
arable intensification in Europe. Journal of Environmental Management, 63(4), 337–365. 
https://doi.org/10.1006/jema.2001.0473  

Strolling of the Heifers. (2019). Locavore index 2019: Agriculture census data shakes up the Locavore Index; Vermont 
still on top; California jumps to second place. Retrieved from: https://www.strollingoftheheifers.com/locavore/  

Theurl, M. C. (2016). Local food systems and their climate impacts: A life cycle perspective. In J. Niewöhner, A. Bruns, 
P. Hostert, T. Krueger, J. Ø. Nielsen, H. Haberl,. . . D. Müller (Eds.), Land Use Competition: Human-Environment 
Interactions (pp. 295–309). Cham: Springer. https://doi.org/10.1007/978-3-319-33628-2_18  



Journal of Agriculture, Food Systems, and Community Development 
ISSN: 2152-0801 online 

https://www.foodsystemsjournal.org 

62 Volume 10, Issue 1 / Fall 2020 

Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515(7528), 518–
522. https://doi.org/10.1038/nature13959  

Tuomisto, H. L., Hodge, I. D., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental 
impacts? A meta-analysis of European research. Journal of Environmental Management, 112, 309–320. 
https://doi.org/10.1016/j.jenvman.2012.08.018  

Tusar, T., & Filipic, B. (2015). Visualization of Pareto front approximations in evolutionary multiobjective optimization: 
A critical review and the Prosection Method. IEEE Transactions on Evolutionary Computation, 19(2), 225–245. 
https://doi.org/10.1109/TEVC.2014.2313407  

Umwelt Bundesamt [UBA]. (2018). Ammoniak-Emissionen. Retrieved from 
https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-
emissionen#textpart-1  

United Nations Environment Programme [UNEP]. (2013). Emerging issues in our global environment (UNEP yearbook: Vol. 
2013). Nairobi, Kenya: United Nations Environment Programme. Retrieved from UNEP website: 
https://www.unenvironment.org/resources/year-books 

United Nations General Assembly. (2015, September 1). Draft outcome document of the United Nations summit for 
the adoption of the post-2015 development agenda (Resolution 69/315). Retrieved from: 
https://www.un.org/en/ga/69/resolutions.shtml 

VELA. (2014). Landwirtschaftlicher Pflanzenbau: Grundlagen des Acker- und Pflanzenbaus, der guten fachlichen Praxis, 
der Verfahrenstechnik sowie der Agrarmeteorologie und des Klima-wandels - Produktions- und Verfahrenstechnik 
der Kulturpflanzen - Dauergrünland - Sonderkulturen - nachwachsende Rohstoffe - ökologischer Landbau - 
Naturschutz und Landschaftspflege - Feldversuchswesen - Waldbewirtschaftung (13th ed.): BLV München. 

Zasada, I., Schmutz, U., Wascher, D., Kneafsey, M., Corsi, S., Mazzocchi, C., . . . Piorr, A. (2019). Food beyond the city 
– Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. 
City, Culture and Society, 16, 25-35. https://doi.org/10.1016/j.ccs.2017.06.002  

Zepeda, L., & Deal, D. (2009). Organic and local food consumer behaviour: Alphabet Theory. International Journal of 
Consumer Studies, 33(6), 697–705. https://doi.org/10.1111/j.1470-6431.2009.00814.x  


	Multi-objective optimization identifies trade-offs between self-sufficiency and environmental impacts of regional agriculture in Baden-Württemberg, Germany
	Abstract
	Keywords
	Introduction and Literature Review
	Problem Setting
	Regional and Organic Agriculture
	Trade-offs in Agriculture and Multi-Objective Considerations
	Research Gap, Goal, and Scope

	Applied Research Methods
	Multi-objective Optimization with EvolutionaryAlgorithms
	Figure 1. Workflow of the Multi-objective Optimization
	Level of Self-Sufficiency
	Demand
	Table 1. Per Capita Annual Demand for Agricultural Products and Product Categories

	Agricultural Land
	Table 2: Which Crops (Food and Fodder) Can Be Grown in the Five Biggest Land Classes

	Agricultural Production Model and LSS Calculation
	Environmental Impact Calculation with LCA
	Conducting the MO
	Desirability Classes
	Table 3. Desirability Thresholds and Scores for the Desirability Classes


	Results
	Figure 2. Pareto Set with 1,500 Elements of a Multi-objective Optimization for Four Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO was conducted for a base food demand scenario.
	Figure 3. Pareto Set with 1,500 Elements of a Multi-objective Optimization (MO) for Four Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO was conducted for a vegetarian demand scenario.
	Figure 4. Pareto Set with 1,500 Elements of a Multi-objective Optimization (MO) for Four Environmental Impacts and the Level of Self-sufficiency in the Form of Level Plots. The MO was conducted for a vegan demand scenario.
	Table 4. Comparison of the Agricultural Land Allocation for a State Where Level of Self-sufficiency (LSS) is Maximized (Left) vs. the Best Solution of the Multi-Objective Optimization
	Figure 5. Radarcharts of Performances Regarding Level of Sself-sufficiency (LSS) and Environmental Impacts in a State of Maximum LSS and the Multi-Objective’s (MO’s) Optimum

	Discussion
	Policy Implications
	Community Development for Sustainable Agriculture
	Limitations of the Study
	Further Research

	Conclusions
	Acknowledgments
	Supplementary Material
	References


